'RD-8154 770 THE BVZHNTiNE FIRING SQUAD PROBLEM(U) HHSSHCHUSETTS 1/4.
INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE
E BURNS ET AL. APR 85 MIT/LCS/TM-275 N00014-33 K 9125

UNCLRSSIFIED

END
fiuneo
onc

S

—
———————

= w Iz g, '
£ g ;

=&
[
LS

22

=

22

=2 [lLs e

s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS 1964-4

LABORATORY FOR
COMPUTER SCIENCE

INSTITUTE OF

@ B, MASSACHUSETTS i
[
TECHNOLOGY

MIT/LCS/TM-275

THE BYZANTINE FIRING SQUAD PROBLEM

James E. Burns

Nancy A. Lynch

DTIC

(AELECTE

AD-A154 770

...
..
..

my .,

Inclassi fied
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

MIT/LCS/TM-275

2, GOVY ACCESSION NO,

3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitle)

S. TYPE OF REPORT & FERIODO COVERED
Interim research

The B . s
e Byzantine Firing Squad Problem March 1985
6. PERFORMING ORG. RLEIPORY NUMBER
MIT/LCS/TM~275
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
James E. Burns and Nancy A. Lynch DARPA/DOD

N00014-83-K-0125

9. PERFOFMING ORGANIZATION NAME AND ADDRESS
MIT L:boratory for Computer Science

545 Technology Square
Cambridge, MA 02139

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

1. CONTROILLING OFFICE NAME AND ADDRESS

DARPA,'DOD
1400 Wilson Blvd.

12. REPORT OATE

March 20, 1985

13 NUMBER OF PAGES
17

Arlington, VA 22209

T4. MONIT JRING AGENCY NAME & ADDRESS(if different from Controliing Otfice)
ONR/Department of the Navy

Information Systems Program

Arlington, VA 22217

18. SECURITY CLASS. (of this report)

Unclassified

Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thls Report)

Approved for public release, distribution is unlimited.

Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report)

18. SUPPLEMENTARY NOTES

Agreement,

19. KEY ¥ ORDS (Continue on reverae side i1 necessary and Identily by block number)
Byzantine generals problem, Firing squad problem.

20. ABST RACT (Continue on reverse elde if necesswry and Identify by block number)
A new problem, the Bysantine Firing Squad problem, is defined and solved in
two versions, Permissive and Strict. Both problems provide for synchronisation
of initially unsynchronised processors in a synchronous network, in the absence
of a common clock and in the presence of a limited number of faulty processors.
Solt tions are given which take the same number of rounds as Bysantine Agreement
but might transmit r times as many bits, where r is the number of rounds used.

EDITION OF 1 NOV 63 1S OBSOLETE
S/N 0102-014- 8501

DD , 3% 1473

. ._*h..~ DRIV PTEI

AN e e

P . N .
DR N AP Rt SRS L P P I UL ; -
el r s AP N PR, N A R ST S SRV P PRl ST e N e e e L - 5
o U, e N et T T e T e U e T e
- SR SRR ST VPR LI R S

s s

. et T
. .'.'1 et
. . . AP
' + . A
PR S W RN ™

Unclassified

SLLURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Additional solutions are provided which use at most one (Permissive) or two (Strict)
additional rounds and send at most n? bits plus four times the number of bits sent
by a chosen Byzantine Agreement algorithm.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Net-
works): Distributed Systems; D.1.3 [Programming Techniques]: Concurrent
Programming; D.4.1 [Operating Systems): Process Management—syncAroniza-
tion; D.4.5 (Operating Systems|: Reliability—fault tolerance; D.4.7 [Operating
Systems]: Organization and Design—distributed systems; real-time systems

General Terms: Reliability

Acc‘qss 1 on For
NTIS R

RAST
DTIC TAB
wmnmmumed g
Justlrication_...EZ-.-.
By\
Distribp_tion/
Availqpility Codeag

e
taiaca a4d

P - - -

SECURITY CLASSIFIEATIOH OF THIS PAGE(When Dats Bntered) . 1

A R A S A et B e 2

THE BYZANTINE FIRING SQUAD PROBLEM

JAMES E. BURNS

Indiana Unveristy

and

NANCY A. LYNCH

Massachusetts Institute of Technology

A new pmblem, the Byzantine Firing Squad problem, is defined and solved in
two versions, Permissive and Strict. Both problems provide for synchronuatlon
of initially unsynchromzed processors in a synchronous network, in the absance
of a comnion clock and in the presence of a limited number of faulty processors.
Solutions ire given which take the same number of rounds as Bysantine Agreeraent
but might transmit r times as many bits, where r is the number of rounds used.
Additiona’ golutions are provided which use at most one (Permissive) or two (Strict)
additional rounds and send at most n? bits plus four times the pumber of bits sent T

,.,,,(a f’\ P

by a chosen Byzantine Agreement a.lgontlun A desimesle Frogpn s WJA— rverer T
Categories and Subject Descriptors: C 2.4 [Computer-Communlcation Net- ‘ A
works]: Distributed Systems; D.1.3 [Programming Techniques]: Concurrent
Programming; D.4.1 [Operating Systems|: Process Management—synchronisa-
tion; D.4.5 |Operating Systems]: Reliability—fault tolerance; D.4.7 {Operating
Systems): Organization and Design—dsstributed systems; real-time systems

General Terms: Reliability

Additional Key Words and Phrases: Agreement, Bysantine Generals problem, Fir-
ing Squad problem

1. INTRODUCTION

We consider a problem of synchronising a collection of processors, some of

which migzht be faulty. We assume that the processors are connected by a com-

plete, synchronous network. Although communication is synchronous, we will not

,.
PARATIRATS

PRI
PRI |

This work was supported in part by the following grants: ARO DAAG2)-84-
K-0058, DARPA N00014-83-K-0125, and NSF 8302391-A01-DCR.

Author’s addresses: J.E. Burns, Computer Science Department, 101 Lindley T
Hall, Indiana University, Bloomington, Indiana 47401; N.A. Lynch, 545 Technology LS
Square N E-43-525, Cambridge, Massachusetts 02139. '

.
TR

assume the global availability of a “current time.® A solution to this synchronisa-

tion problem, which we call the *Bysantine Firing Squad® problem, would be useful

iu the following types of situations.

(»)

(b)

()

Real-time processing. It might be necessary for several processors to carry
out some external action simultaneously, perhaps after the occurrence of a
particular unpredictable event. For example, several processors on board an
aircraft might be responsible for causing several actuators to perform a specific
action in concert, in response to a signal from the pilot. The signal might
arrive at the different processors at different times. A Bysantine Firing Squad

algorithm could be used to synchronise the processors’ actions.

Distributed initiation. Most synchronous paralle]l distributed algorithms as-
sume that all processors begin their protocols together. If we would like to use
such algorithms in a network in which there is no common notion of time, we
need to cause the processors participating in the algorithm to synchronise their
start times. A preliminary Bysantine Firing Squad algorithm could be used to
accomplish this.

Distributed termination. In certain algorithms (e.g., synchronous probabilistic
agreement [1], approximate agreement (3]), individual processors might com-
plete their parts of the algorithm at different times. If it is necessary to guar-
antee simultaneous termination, a Bysantine Firing Squad algorithm could be

run after the main algorithm.

This synchronization problem can be considered to be a combination of two

well-known problems: the Firing Squad Synchronisation problem and the Bysantine

Generals problem. Accordingly, we call the new problem the Byzantine Firing
Squad problem.

ah

Lt Sl
. . TR
LI St s
. L et [
A e daltaala Aoa o

The Firing Squad Synchronisation problem was first proposed in about 1857 by
John Myhill and described by Edward Moore in 1962 [9]. In the original problera, a
finite pumber of finite state machines connected in a line are to be programme«| so
that they all go to a particular state (“fire”) simultaneously after a “start” sigmal
is given by one of the machines at the end of the line, the “General®. Over the
years, this problem has been generalized and widely studied (see the bibliography
in Nishitari and Honda [10}). In our problem, the finite state machines are repliced

by (not necessarily finite) automata connected by a complete network.

The Byzantine Generals problem was first proposed by Pease, Shostak and
Lamport [(1], although it did not receive that name until a later work appearec. [8].
For a receat bibliography of work on the problem see Fischer [5]. The Bysartine
Generals problem can be paraphrased as follows. The General, must broadc:st a
value to the remaining processors, even though some processors might be faulty.
If the General is a reliable processor, then all reliable processors must correctly
determine the value. Even if the General is faulty, all reliable processors must agree
on some (arbitrary) value. (A reliable processor always behaves according to a
given protocol, while a faulty processor can behave in an arbitrary way.) We will
assume that all processors are acting as Generals, broadcasting a local value to the
others, 8o that at the end of the algorithm all reliable processors agree on a vector of
values. Thus, Bysantine Agreement for broadcasting a local value of each procsssor
is reached if and only if at the end of the algorithm the following conditions hold:

(A1) Agrecment: All reliable processors agree on the same vector of values.

A2) Validity: If processor 1 is reliable, then s*® component of the agreed upon vector
y
is the value that s broadcast.

A Byzantine Agreement algorithm is called f-resilient if Bysantine Agreement

.................

is reached for any number of faulty processors not exceeding f. We will use f for
the number of faulty processors and n for the total number of processors for the

remainder of the paper.

The Bysantine Firing Squad problem combines the Firing Squad problem with
the Bysantine Generals problem. Initially, all the (reliable) processors are ®quies-
cent” (not communicating). At an unpredictable time, we can require the system
to begin the firing protocol. This is done by sending special START signals to some
of the processors (possibly at different times). Within a finite number of rounds,
all of the reliable processors must simultaneously send special FIRE signals, even

though a limited number of processors might exhibit “Bysantine”® failure.

Section 2 gives a more formal description of two versions, Permissive and Strict,
of the Bysantine Firing Squad problem. The versions differ in the number of START
signals which the external source must send to force firing. Section 3 presents
a family of solutions to these Bysantine Firing Squad problems; each solution is
based on a chosen Byszantine Agreement algorithm. These solutions take no more
rounds than the chosen algorithm, but might require sending r times as many bits
as sent by the Byzantine Agreement algorithm. We show in section 4 how to reduce
this to only n? bits plus four times as many bits as sent by Byszantine Agreement
with the addition of only one preliminary round for the Permissive case and two

preliminary rounds for the Strict case.

We hope that our solutions will seem simple and clear to the reader, but this
should not imply that the algorithms are easily obtained. Indeed, a direct solution
to the problem is not immediately obvious. Instead, we give an example of a reduc-
tion between distributed problems (it would be nice to have more such examples).
We encourage the reader to consider the problem carefully before examining the

solutions in sections 3 and 4.

T TN T AT T e

=

- e e e e L
P T I
Ao T
Lot e
PP T
PO T S)

2. THE DEFINITION OF THE PROBLEM

We mode] a synchronous system by a state transition system. We will not
burden the reader with a lot of notational detail, but trust that the following de-
scription is sufficient to construct the formal state transition sysiem that we have
in mind.

A synchronous system consists of a set of processors, an initial state for cach
processor, and transition functions which determine the protocols of the procestors.
In each transition (also referred to as a round), a processor receives a message
from every other processor and an external source, sends a message to every other

processor and an external destination, and goes to a new state.

The reliable processors always send the messages specified by their protocols,
but the faulty processors can send any messages. In particular, we do not assume
that processors can append unforgeable signatures to their messages. For results on
the Byzantine Firing Squad problem with signatures refer to Coan, Dolev, Dwork
and Stockmeyer (2].

In a synchronous system, information can be conveyed by the absence of a
signal as well as by an explicit signal. Thus, we distinguish a particular message,
called the null message; all other messages are simply called signals. A processor is
said to be quiescent at a certain state if, in any transition from that state in which
it receives only null messages, it sends only null messages and remains in the same

state. If a processor is not quiescent then it is awake.

We require that all processors be quiescent in their initial atates. Initial qui-
escence guarantees that no signals will be sent by any reliable processor until the

external nource or a faulty processor sends a signal to some reliable processor.

For the Byzantine Firing Squad problem, the only signal which is ever seat by

PR BTN T L N A
PR SR T T Y R s . a v & .
(Y S FLPC LN | P PRt

MR Mt St i 4 p—— y
N AR . ERARIA I ',»'_-_..-'.,".'.' -—‘F'F_m L Aol e e et s S S She et Snte B B Jage

the external source is a special START signal, which is used to initiate the firing
protocol. The only signal which is ever sent to the external destination is a special
FIRE signal, indicating that the processor has fired.

The Bysantine Firing Squad problem admits several variations depending on
how we wish to force firing. We might want firing to occur if just a single START
signal (from the external source} is received by any reliable processor. Note that
this implies that a faulty processor can cause firing by pretending to be a reliable
processor which has received a START signal. On the other band, if we prohibit fir-
ing until some reliable processor has received a START signal, then a single START
signal is not sufficient to guarantee firing, since a lone processor cannot (in general)
convince the others that it is reliable. We term these two variations Permissive and
Strict. (An algorithm which solves one of these does not solve the other.)

An f-resilient Permissive Bysantine Firing Squad algorithm must satisfy the

following conditions whenever the number of faulty processors does not exceed f:

(C1) Agreement: If any reliable processor sends a FIRE message in some round, then

all reliable processors send a FIRE message in that round.

(C2) Permissive Validity: If any reliable processor receives a START signal, then

some reliable processor eventually sends a FIRE message.

An f-resilient Strict Bysantine Firing Squad algorithm will satisfy (C1) and
the following additional condition whenever the number of faulty processors does

not exceed f:

(C2') Strict Validity:

a) If at least f + 1 reliable processors receive a START signal, then some

reliable processor eventually sends a FIRE message.

b) If any reliable processor sends a FIRE message, then some reliable processor
previously received a START signal.

We wish to measure the efficiency of communication of our algorithms. 1t is not
useful to measure the direct costs incurred by faulty processors since these miight
be unbounded. We also wish to avoid charging for *preliminary rounds® whicl are
caused by faulty processors and do not lead to termination. We therefore introduce

the concept of “measured portion of a computation.”

Let sl be an algorithm. Y A is a Bysantine Agreement algorithm, then the
entire computation from initial state to termination is measured. If 4 is a Permissive
Bysantine Firing Squad algorithm, then the measured portion of the computation
is from tae first reception of a START message by a reliable processor until a
reliable processor fires. If A is a Strict Bysantine Firing Squad algorithm, then
the measured portion of the computation is from the round in which the f + 1%
reliable processor receives a START signal until a reliable processor fires. Now we
can define our time measure, Rounds{ £) simply as the worst case number of rcunds
in the measured portion of the computation. Many communication measures are
possible. We shall use Bits(A) as the worst case total pumber of bits sent by all the
reliable processors in the measured portion of the computation. We assume that
variable length messages are used so that the shortest, non-null message that can

be sent costs one bit.

3. TIME EFFICIENT SOLUTIONS TO THE BYZANTINE FIRING SQUAD PROB-
LEMS

Our solutions are based on an arbitrary Byzantine Agreement algorithm (which
satisfies the restriction specified below). Our algorithms inherit most of the char-

acteristics of the chosen agreement algorithm, so that behavior can be tailored

PRI 3 PR R o L R T T P T

........................

..................................
“ . PRI S S ot T L e o PO RR Y

as desired (e.g., minimising Rownds or Bits). Also, the resiliency of the derived

Bysantine Firing Squad algorithm is identical to that of the Bysantine Agreement
algorithm. Since it is known that n > 3f is sufficient for Bysantine Agreement (8],
the Byzantine Firing Squad problem can also be solved whenever n > 3f. It has
also been shown {2}, by reducing Lamport’s Weak Bysantine Agreement problem {7)
to the Bysantine Firing Squad problem, that the latter problem cannot be solved

unless n > 3f.

All of the deterministic Byzantine Agreement algorithms that we know of sat-
isfy the following condition:

(A3) Rounds(A) is bounded.

In this case, we say A is a Bounded Byzantine Agreement algorithm. (Note that
(A3) need not imply that A is “immediate” as defined by Dolev, et al. (4].) In the
remainder of the paper, we will let Rounds(4) =r.

Let A be a Bounded Byzantine Agreement algorithm. We use A to construct
new algorithms Bp(A) and Bs(A) which solve the Permissive and Strict Bysantine
Firing Squad problem, respectively. When A is understood from context, we simply
refer to Bp and Bg. Also, since Bp and Bg are very similar, it is convenient to
use B to refer to them jointly. In algorithm Bp, the reliable processors will all fire
within at most r rounds after the first reliable processor receives a START signal.
In algorithm Bg all reliable processors fire in at most r rounds after f + 1 reliable

processors have received a START signal.
We begin by describing algorithms Bp(A) and B'5(A) which satisfy all the
required conditions for a slightly more general model in which the processors are

not required to be quiescent initially. The basic idea of algorithm B‘(A) is to

simulate a copy of algorithm A starting in each round. Each simulation runs for

ERAata fn St Tine ¥ e -
~ B A et e e e e
) e p——
. T——

tly r rounds, so that at any time only r are in progress. The messages from the
ive simulations of algorithm A are coded into a single message for algorithm B’
straightforward way. At each time t, each processor begins participating in a
tlation of algorithm A in which it sends a value which is coded to mean 0: *Not
dy,” or 1: *Ready.® A processor becomes Ready upon the receipt of a START
al and 1remains Ready thereafter. At time ¢ + r this simulation terminates, snd
sctor of values is computed. For B}, all reliable processors fire if the vector is

all sero. For BY, they fire if there are at least f + 1 non-sero elements.

eorem 1. Let A be an f-resilient Bounded Bysantine Agreement algorithm.
en algorithms Bp(A) and B'5(A) are f-resilient and satisfy conditions (C1) and
2), and (C1) and (C2’), respectively. Also, Rounds(8p(A)) = Rounds(A) and
ts(Bp(A)) < Rounds(A)x Bits(A) bold for Bp, while Rounds(B's(A)) = Rounds(A)
d Bits(8'5(A)) < Rounds(A) x Bits(A) bold for B'.

Proof: The f-resilency of Bp and B’ follow directly from the f-resiliency
A. By assumption, A satisfies (A1), (A2), and (A3). By (Al), all reliable
ocessors use the same vector to make their firing decisions in each round, so
’1) is satisfied (for both B’ and 8%). By (A2), this vector will be non-sero for the
mulation beginning with the round in which the first reliable processor receives
START signal, so (C2) is satisfied for Bp; furthermore, by (A3), firing occurs
ithin # rounds after the first reception of a START signal by a reliable processor,
» Rounds(8'p(A)) = Rounds{R).

Algorithm B satisfies (C2'b) since if no reliable processor ever receives a
TART signal, then no vector can be computed with more than f ones (by (A2)), so
> reliabl: processor will fire. Condition (C2’a) is also satisfied since if f+ 1 reliable

rocessors have received START signals by round ¢, then a vector will be computed

9

N O

ML Ol O
P . o
e e e

by round ¢ + r which has at least f + 1 ones, causing some reliable processor to fire.
Also, firing must occur within r rounds after f + 1 reliable processors have received
a START signal, Rounds{B'(A)) = Rounds(4).

The composite message transmitted by a reliable processor in one round in-
cludes exactly one message from each round of a simulation of 4, so the number
of bits sent by all reliable processors in any round (using a suitable encoding) is
bounded by Bits{). Since at most r rounds occur in the measured portion of the
computation, Bits(8'(4)) < Rounds(4) x Bits(A), for both 8p and Bs. O

We now show how to modify the B’ algorithms to obtain 8 algorithms which
meet the condition of initial quiescence required by our model. The difficulty is that
when a reliable processor receives its first signal, some simulations might already

be in progress. However, a great deal can be inferred about these computations.

Consider the specific computation of algorithm A in which all processors are
reliable and each sends value 0. We call this computation the sero computation and
refer to the messages that are sent as sero messages. These computations and their

messages are completely defined and precomputable.

Any one-to-one encoding of meanings to measages can be used without affecting
the behavior of an algorithm. We choose to code a special meaning into the null
message. A null message is interpreted to consist of sero messages for each of the r
simulations in progress. Now consider the particular computation of algorithm 8’
using this coding in which all processes are reliable and no START signal is received
from the external source. After r rounds, all processors begin sending null messages
and continue to do so throughout the remainder of the computation. At this point,
all processors are quiescent, according to our definition. We therefore define the 8
algorithms to be identical to the B' algorithms except that the initial states of the

processors are chosen to be the states reached using algorithm 8' after r rounds of

the particular computation described above.

Theorem 3. Let A be an f-resilient Bounded Bysantine Agreement algorithm.
Then algorithms Bp(A) and Bs(A) are f-resilient solutions $o the Permirsive
and Strict Bysantine Firing Squad problems, respectively. Furthermore, we have
Rounds(Bp(A)) = Rounds(Bs(A)) = Rownds(A), and both Bits(Bp(A)) and
Bits(85(A)) are less than or equal to Rounds(A) x Bits(A).

Proof: By construction, all processors are quiescent in their initial states, so
the initial condition required by the model is satisfied both for 8p and B8s. The

remaining conditions follow directly from Theorem 1. O

4. COMMUNICATION EFFICIENT SOLUTIONS TO THE BYZANTINE FIRING
SQUAD PROBLEMS

The eolutions presented in the preceding section send up to r times as many
bits as the chosen Byszantine Agreement algorithm. Since it is known that r > f
[6], this is a significant increase in communication cost. Various coding tricks (such
as using short codes for ~xpected messages and taking advantage of knowledge
of which processors are faulty when possible) could be used to reduce this cost.
However, we will show how to reduce the increase in cost to a constant factor (and
an additional n? bits) without any sophisticated coding. Our method requir& at
moat one additional round for the Permissive problem and two additional rounds
for the Strict problem.

We wish to define new algorithms, Cp(4) and Cs(A), which are similar to
Bp(A) and Bs(A), respectively, but send many fewer bits than A. We begin by

defining auxiliary algorithms Cp(4) and C5(A) which are identical to 8p(A) and
Bs(A) except in the way that Ready is defined and the condition under which firing

1]

o
S

occurs. The ' algorithms also use some preliminary messages to establish the
Ready condition. We will then show how to modify the C’ algorithms to get the C
algorithms.

In C’p, a processor becomes Ready upon receiving any signal, rather than only
upon receiving a START signal as in 8p. The firing condition is changed to *fire if
there are at least f+ 1 non-sero elements in the computed vector.® The first time a
reliable processor receives a signal and becomes Ready, it sends a special GO signal
to every other processor. At most n? GO asignals will be sent.

In C’, a processor sends the GO signal to every processor after receiving either
a START signal or GO signals from f+ 1 other processors (which implies that some
reliable processor has received a START signal). A reliable processor sends GO
signals only the first time such a condition occurs and sends only null messages
otherwise until it becomes Ready. A reliaiale processor becomes Ready only after
receiving GO signals from at least 2f + 1 processors (perbaps including itself). The
firing condition for Cs is the same as for Cp: *fire if there are at least f+1 non-sero

elements in the computed vector.”

Theorem 8. Let A be an [-resilient Bounded Bysantine Agreement algorithm.
Then Cp(A) and C5(A) are f-resilient and satisfy conditions (C1) and (C2), and
(C1) and (C2’), respectively. Furthermore, Rounds(C(A)) < Rounds(A) + 1 and
Rounds(C's(A)) < Rounds(A) +2.

Proof: Since Cp and C§ simulate A and all processors use the same firing

condition, both are f-resilient and (C1) is satisfied for both.

Let t be the round in which the first reliable processor receives a START mes-
sage in C/». Then at least f + 1 reliable processors will be Ready by round ¢ + 1,

and all reliable processors will fire no later than round ¢ + r + 1. Thus, C} eatisfies

12

)

., 4; ':
< ’ » 1t
AR AN

.
o
PO T

Wit

PR W)

(C2) and Rownds(C’p(A)) < Rounds(4) + 1.
; Let t be the round in which the f+ 1°* processor receives 3 START message in
Cs. Then by round ¢ + 1 every reliable processor will have received GO signals from T
at Jeast f + 1 processors, and by round ¢ + 2 every reliable processor will be Ready i

S
PR .
YV N SN,

(since at least 2f + 1 processors will have sent GO signals). Thus, firing will occur '-‘:?""
by round t + r + 2, and Cj satisfies (C2'a) and Rosnds(85(4)) < Rounds(A) + 2.
Finally, if ao reliable processor receives a START signal, then no reliable processor
will send 2 GO signal and no reliable processor will become Ready, hence firing will :)
not occur and (C2’b) is satisfied. [J

) T v,
T—TT
.

We now show how to derive C from ¢’ by reducing the number of simulations of
A. We take advantage of the fact that all reliable processors become Ready within

a time period of at most two rounds, which is shown by the following lemma.

Lemma 4. In either Cp or Cs, if a reliable processor becomes Ready in round ¢
then all reliable processors become Ready in either rounds ¢ and ¢ — 1 or in rounds

tandt+1.

Proof: Let t be the first round in which a reliable processor becomes Ready. In
Cp, all reliable processors which are not Ready in round ¢ will receive a GO signal

and become Ready in round ¢t + 1. In Cg, since some reliable processor received

2/ + 1 GO signals by round ¢, every reliable processor must have received £+ 1 GO

signals by round ¢t. Thus, every reliable processor will send a GO signal in round ¢

:' if not before, and every reliable processor will be Ready no later than round ¢ + 1. T
‘ 0 T
Let us denote the simulation which will terminate in round ¢ + r (and hence o
conceptually began in round t) by S. If simulation S; would cause firing if carried f
to completion (s.e., the computed vector will have more than f non-sero values),

13

>

then we say that S, will fire. In our revision of ', a processor will not send the

messages of all r simulations that are used in C’. If processor p does send the
messages of simulation S;, then we say that p participates in simulation S;.

Suppose processor p becomes Ready in round ¢. Then, by Lemma 4, p can
deduce that Sg,, will fire since all reliable processors will be Ready no later than
round ¢ + 1. Also, by Lemma 4, S;_3 will not fire since no reliable processor can
have been Ready in that round, implying that at most f ones will be in the vector
computed. Computations S;_3, S¢—1, S¢, and S¢,y are the only ones which p needs

to consider.

Algorithm € is identical to algorithm C' except that if processor p becomes
Ready in round ¢t then p will participate only in simulations S_3, S¢—;, S, and
Si4+1. Also, p will ignore the result of S;_; and only act (fire or not) on the
results of S;_,, S¢, and S;41. There is no difficulty in coding the four (at most)
messages of algorithm A so that each receiving processor can match them up with

the appropriate simulations.

Theorem 6. Let A be an f-resilient Bounded Bysantine Agreement algorithm.
Then algorithm Cp(A) and Cs(A) are f-resilient solutions to the Permissive and
Strict Bysantine Firing Squad problems. For Cp, Rounds{Cp(A)) < Rounds(A) + 1
and for Cs, Rounds(Cs(A)) < Rounds(A) + 2. Both Bits(Cp(A)) and Bits(Cs(4))
are at most n? + 4 x Bits(A).

Proof: Suppose that round ¢ is the first round in which a reliable processor
becomes Ready. (If no reliable processor becomes Ready, then the theorem is vac-
uously true.) For Cg, round ¢t is also the first round of the measured portion of the

computation. For Cp, the first round of the measured portion of the computation

is round ¢ - 1. By Lemma 4, all reliable processors awaken in either round ¢ or ¢+ 1.

Call the former early and the latter late.

Early processors will participate in simulations S;_3, S;—;, S, and S¢4y. Bow-
ever, since they will not act on the result of S;_y, the messages which are input
o these simulations are irrelevant. Late processors will participate in simulations
Se-1s Sty St41, and Sp43. Since all reliable processors participate in simulations
S¢—1, S¢y and Sp 4y, the resulting vectors that they compute must satisfy conditions
(A1) and (A2). This implies that (C1) is satisfied by both Cp and Cs and that
both € algorithms are f-resilient.

Since all reliable processors are Ready by round ¢ + 1, 8¢, is guaranteed to
fire. By the definition of Ready for Cp, condition (C2) is satisfied by Cp, and firing
will occur within £+ 1 rounds after a reliable processor receives 3 START signal (or

any other rignal), so Rounds(Cp) < Rounds(A) + 1.

In Cs, if f + 1 reliable processors receive a START signal in round ¢/, then
some reliable will become Ready by round ¢’ 4 1. By the foregoing discussion,
some reliable processor will fire by round ¢’ + r + 2, so condition (C2’a) holds and
Rounds(Cs) < Rounds(A)+ 2. On the other hand, if no reliable processor receives a
START sigunal, then no reliable processor will send a GO signal and hence no reliable
proceasor will become Ready, so (C2'b) holds.

Each processor participates in at most four simulations of algorithm A. There
is no difficalty in coding the messages of these simulations to use at most four times
the number of bits used by algorithm A. The GO messages can usually *piggyback®
at no cost in Cs and sometimes do so in Cp since any non-null message will do to
communicite a GO signal. Otherwise a single bit will suffice to send . GO signal,
80, Bits(C~(A)) < n? + 4 x Bits(A), and Bits(Cs(A)) < n? + 4 x Bite(4). O

15

‘l'.-'l.l’
o [
it hed ke A

o et e,
. P PR R R

(VIR PR L v .
[PEPLIAISE] G PUPE M N AN

Acknowledgment: We wish to thank Mike Fischer for suggestions on the presen-

tation of these ideas, and Brian Coan and John Franco for their criticism of early
drafts of this paper.

REFERENCES

1.

BEN-OR, M. Another advantage of free choice: Completely asynchronous
agreement protocols (extended abstract). In Proceedings of the Second Annual
ACM Symposium on Principles of Distributed Computing (Montreal, Quebec,
Canada, August 17-19, 1983). ACM, New York, 1983, pp. 27-44.

. COAN, B., DoLEV, D., DWORK, C. AND STOCKMEYER, L. The dis-

tributed firing squad problem. To appear in ACM Symposium on the Theory
of Computing, 1985.

. DoLev, D., LYNCH, N., PINTER, S., STARK, E., AND WEIHL, W.

Reaching appraximate agreement in the presence of faults. In Proceedings
of 3rd Annual IEEE Symposium on Reliability in Distributed Software and
Database Systems. IEEE, New York, 1083.

. DoLEv, D., REISCHUK, R., AND STRonG, H.R. ‘Eventual’ is earlier than

‘immedijate.” In Proceedings 23rd Annual Symposium on Foundations of Com-
puter Science (Chicago, IL, November 3-8, 1082). IEEE, New York, 1082,
pp. 106-202. ' .

. FISCHER, M.J. The consensus problem in unreliable distributed systems (A

brief survey). YALEU/DCS/RR-273, Yale University, New Haven, CT, June

1983.
FISCHER, M.J. AND LYNCH, N.A. A lower bound for the time to assure

interactive consistency. Information Processing Letters 14, 4, (June 1982), pp.
183-186.

. LAMPORT, L. The weak Bysantine generals problem. Journal of the ACM 30,

3 (July 1983), 668—676.

. LAMPORT, L., SROSTAK, R., AND PEASE, M. The Bysantine generals

problem. ACM Transactions on Programming Languages and Systems 4, 3

16

ST . R A

Lo e it]
B A A A Y e e e,
-_-‘..;l PPN S SRS ¥ U ul e

BEEE A DN
A et
. ST e e

(July 1982), 382—401. (Also see: The Bysantine generals problem, Tech. Report
84, Computer Science Lab., SRI International, 1080.)

9. MOORE, E.F. The firing squad synchronisation problem. In Sequential Ma-
chines, Selected Papers. MOORE, E.F., Ed., Addison-Wesley, Reading, MA,
1064, pp. 213-214.

10. NI1sHITANI, Y., AND HONDA, N. The firing squad synchronisation problem
for graphs. Theoretical Computer Science 14, (1981), 30-61.

11. PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching agreement in the
presence of faults. Journal of the ACM 27, 2 (Apr. 1980), 228-234.

17

............................
"""""""""

OFFICIAL DISTRIBUTION LIST

1985

Director

Information Processincg Techniques Office
Defense Advanced Research Projects Agency

1300 Wilson Boulevard
Arlincton, VA 22209

Office of Naval Research

800 North Quincy Street
Arlinaton, VA 22217

Attn: Dr. R. Grafton, Code 433

Director, Code 2627
Naval Research Laboratory
washington, DC 20375

Deferse Technical Information Center
Cameron Station
Alexandria, VA 22314

National Science Foundation
Office cf Computing Activities
1800 G. Street, N.W.
Wwashincton, DC 20550

sttn: Program Director

Dr. E.B. Royce, Code 38
Head, Research Department
Naval Wearons Center
China Lake¢, CA 93555

Dr. G. Hopper, USNR
NAVDAC-00H

Department of the Navy
Washinaton, DC 20374

12

Copies

Copies

Copies

Corpies

Coypies

(]
8]
'ry

3

7-85

L L .
. A
. ’ LIPS I
R SR YR
b otk ad s

